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Abstract  
The use of machine learning and big data is becoming increasingly important for optimizing production and 
ensuring operational efficiency in the upstream oil and gas industry. This paper presents a hybrid virtual 
metering solution aimed at supplementing and improving flow rate predictions. By leveraging the capabilities 
of a multiphase flow simulator (LedaFlow) and advanced machine learning techniques, we generate high-
fidelity synthetic data to train a neural network model. This trained model is deployed in an online, real-time 
environment to predict gas, oil, and water flow rates using measured data available from typical well 
instrumentation. 
 
This methodology was applied to an offshore field in the North Sea operated by Vår Energi, encompassing 
15 wells, and its performance was evaluated against field measurements located on the offshore floating 
production unit. The results demonstrate enhanced prediction accuracy under highly varying well conditions, 
thereby supporting better decision-making in flow assurance and production operations. 

 
 

Introduction 
The upstream oil and gas industry is increasingly 
relying on advanced technologies to enhance 
production optimization and ensure operational 
efficiency. Machine learning and big data analytics 
are at the forefront of these technological 
advancements, offering significant potential for 
improving flow rate predictions. Accurate flow rate 
measurement is crucial for optimizing production, 
ensuring safety, and making informed operational 
decisions. Traditional metering techniques, while 
effective, can be complemented and enhanced 
through the integration of virtual metering 
solutions that utilize machine learning models. 
This paper introduces a hybrid virtual metering 
solution that leverages the capabilities of 
LedaFlow (transient multiphase flow simulation 
software) and advanced machine learning 
techniques. By generating high-fidelity synthetic 
data, we train a neural network model to predict 
gas, oil, and water flow rates in real-time. This 
model is deployed in an offshore field in the North 
Sea, encompassing 15 wells, and its performance 
is evaluated against field measurements from the 
offshore floating production unit. 
 

Methodology  
The hybrid virtual metering solution involves the 
integration of LedaFlow, a state-of-the-art 
multiphase flow simulation tool, with advanced 

machine learning techniques to generate synthetic 
data and train a neural network model.  
 
Experimental Procedure 
The methodology can be divided into several key 
steps depicted in Fig. (1).  
 

 
Figure 1: Hybrid Approach Workflow 

 
1. Data Collection and Preprocessing: 

Field data from 15 wells in an offshore 
field in the North Sea is collected. This 
data includes well pressure, temperature, 
and flow rates of gas, oil, and water. Initial 
preprocessing involves cleaning the data 
to remove anomalies and fill in missing 
values to ensure data quality and 
consistency. 
 

2. Multiphase Flow Model Build and Initial 
Calibration: Use of field data for initial 
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multiphase flow model benchmarking and 
calibration.  

 
3. Synthetic Data Generation: The 

multiphase flow model is used to simulate 
various well conditions and generate high-
fidelity steady-state synthetic data. This 
synthetic data is used to supplement the 
limited field data and enhance the training 
dataset for the neural network model. The 
data generated (given different model 
boundary inputs) is detailed in the next 
step and forms the input layer for the 
neural network. 
 

4. Neural Network Training: The neural 
network model was trained using 
synthetic data. The model architecture 
was optimized to ensure accurate 
prediction of flow rates under varying well 
conditions. The architecture included: 

Input Layer: Featuring wellhead pressure 
(𝑃𝑊𝐻), bottom-hole pressure (𝑃𝐵𝐻), 

wellhead temperature (𝑇𝑊𝐻), bottom-hole 
temperature (𝑇𝐵𝐻), wellbore pressure drop 

(𝛥𝑃), wellbore temperature drop (𝛥𝑇) and 

well subsea choke (𝐶𝑉) opening. Noise 
could be introduced for certain machine 
learning features, when necessary, to 
prevent overfitting and address potential 
inaccuracies in measurements. 

Hidden Layers: Comprised of multiple 
layers of interconnected nodes (neurons), 
which processed the input features 
through nonlinear transformations to 
capture complex relationships. 

Output Layer: Provided the predicted flow 
rates of gas, oil, and water. The 
relationship modeled can be described by 
the Eq. (1):  

𝑄𝑔𝑎𝑠,𝑄𝑜𝑖𝑙 ,𝑄𝑤𝑎𝑡𝑒𝑟  

=  𝑓(𝑃𝐵𝐻 , 𝑃𝑊𝐻 , 𝑇𝐵𝐻 , 𝑇𝑊𝐻 , 𝛥𝑃, 𝛥𝑇, 𝐶𝑉)      (1)        

5. Machine Learning (ML) Model Testing: 
The trained ML model is tested on diverse 
synthetic test datasets, which include 
varying gas-oil ratios (GOR) and water cut 
(WC) ranges, to ensure its effectiveness 
and accuracy. By using synthetic data not 
previously utilized during the training 
phase, this evaluation phase assessed 
the model's ability to generalize to new, 
unseen conditions. The model's output 
was compared against these test sets, 
with key metrics such as the R² score 
(described in Eq. (2)) and comparisons of 
actual (𝑦𝑖) versus predicted flow rates (�̂�𝑖). 

These evaluations quantified the model's 
accuracy and predictive power, ensuring 
its robustness and reliability. 
 
 

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠 

𝑆𝑆𝑡𝑜𝑡
                                           (2)                                                    
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6. Real-time Deployment: The trained 

neural network model is deployed in an 
online environment to predict gas, oil, and 
water flow rates in real-time. The model's 
performance is continuously monitored 
and evaluated against field 
measurements from the offshore floating 
production unit. Machine learning 
predicted rates are also used as boundary 
conditions for online dynamic simulations 
based on LedaFlow models, providing a 
pathway for real-time verification and 
accuracy monitoring of the ML 
predictions. 
 

7. Re-Training and Re-Calibration: Based 
on comparisons with topside 
measurements, the multiphase flow 
model is re-tuned, particularly focusing on 
heat transfer coefficient to calibrate for 
uncertainties in wellbore heat loss, and 
synthetic data was re-generated. Machine 
learning model parameters are also tuned 
to prevent overfitting to test datasets 
(feature noise, epochs, number of hidden 
layers and nodes, etc.).  

 
 

Results and Discussion  
All wells in the project are characterized as low 
flow, late-stage wells. The individual multiphase 
flow meters (MPFMs) installed on these wells 
were found to be either faulty or have different 
ranges of inaccuracy, which necessitated the 
implementation of a virtual flow metering 
approach. 
 
The summation of the machine learning-predicted 
multiphase flow rates is compared against the 
topsides inlet separator(s) single-phase meters 
(outlet lines) in Figs. (2-4). The comparison 
revealed an accuracy of 5-10% for all three 
phases, with variations attributed to changing 
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operating conditions (e.g., changes in WC, GOR, 
choke position, or inlet flowline pressure due to 
well routing) not originally accounted for in the 
initial training iteration. Additionally, some 
discrepancies were due to faulty or incorrect 
measurement values from the field. 
 
 

 
Figure 2: Measured vs Simulated Gas Daily Totalized 

Volumes 

 

 
Figure 3: Measured vs Simulated Oil Daily Totalized 

Volumes 

 

 
Figure 4: Measured vs Simulated Water Daily Totalized 

Volumes 

 

Key findings from the results include: 
 

1. Improved Accuracy: The integration of 
synthetic data with field measurements, 
along with ML model retraining as more 
historical data became available (e.g., 
pressure, temperature and choke CV 
operating ranges), significantly improved 
the neural network model's accuracy, as 
shown by the downward trend of the % 
error in Figs. (2-4). The model mostly 
provided flow rate predictions within a 5-
10% error margin when compared to 
topsides single-phase measurements 
after initial training iterations were 
completed. 
 

2. Enhanced Reliability: The virtual 
metering system proved to be a reliable 
alternative to the faulty or inaccurate 
individual well MPFMs, ensuring 
continuous and accurate monitoring of 
well performance. By utilizing advanced 
algorithms and integrating data from 
multiple sources, the system provided 
consistent measurements even in 
challenging operating conditions. 

 
3. Real-time Adaptability: Integrating the 

ML VFM with the online dynamic 
simulator enabled continuous validation, 
facilitated the identification of recalibration 
needs, and provided accurate flow 
assurance insights. 
 

 

Conclusions  
The implementation of a hybrid virtual metering 
solution, which combines LedaFlow simulations 
with advanced machine learning techniques, has 
enhanced flow rate predictions for an offshore 
field in the North Sea. The neural network model, 
trained on a blend of field data (implicitly via 
model calibration) and high-fidelity synthetic data 
(explicitly), demonstrated notable accuracy 
improvements under a variety of well conditions. 
This innovative approach not only addresses the 
limitations of traditional multiphase flow meters 
but also supports better decision-making in flow 
assurance and production operations. Other 
benefits of this hybrid solution include GOR and 
WC predictability, less computational resources 
needed than traditional physics based virtual 
metering solutions and reduced online tuning 
requirements. 
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