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Abstract 
Addressing the global challenge of climate change necessitates reducing greenhouse gas emissions, with CO2 
transportation and sequestration playing pivotal roles in mitigating economic and environmental impacts. The 
integration of these processes within the oil and gas industry, particularly in enhanced oil recovery techniques, 
underscores the importance of minimizing CO2 leakage and optimizing recycling rates. However, effective 
implementation encounters hurdles in mass transport over long distances and secure underground storage. 
The lattice Boltzmann method (LBM) emerges as a promising solution, offering efficient modeling of CO2 
transport and sequestration at the mesoscale. Leveraging Kinetic Theory, LBM provides a versatile approach 
to simulate fluid flow, accounting for complex interactions and thermodynamic principles. This study proposes 
a forcing term correction in LBM to ensure accurate representation of mass transport phenomena, validated 
through simulations of Couette flow with suction-injection. The inclusion of this term enables precise recovery 
of both the Navier-Stokes and Maxwell-Stefan equations, enhancing the reliability of LBM simulations for 
diverse engineering applications. 
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Introduction 
As the world grapples with the impacts of climate 
change, reducing greenhouse gas emissions has 
become a global priority. Specifically, CO2 
transportation and sequestration play vital roles in 
addressing both economic and environmental 
challenges associated with carbon emissions [1]. 
In the context of the oil and gas industry, this 
process is closely linked to enhanced oil recovery 
techniques, where CO2 is injected into oil 
reservoirs to extract additional oil [2], in which the 
minimization of CO2 leakage into the reservoir and 
optimization of CO2 recycling rates are desired 
[1,2]. However, the effective implementation of CO2 
transportation and sequestration faces significant 
challenges, particularly in mass transport over long 
distances and the safe and secure storage of large 
volumes of CO2 underground. The lattice 
Boltzmann method (LBM) emerges as a potential 
strategy to address these challenges. By 
simulating fluid flow and transport processes at the 
mesoscale, LBM offers a versatile and efficient 
approach to modeling CO2 transport and 
sequestration, enabling researchers and engineers 
to optimize transport networks and storage 
strategies for maximum efficiency and 
environmental benefit [3]. 
Based on Kinetic Theory, LBM represents a 
mesoscopic approach to model transport 

phenomena, where the fluid is modeled as a 
collection of fictitious particles moving and 
interacting on a discrete lattice [4]. This approach 
offers simplicity and ability to incorporate 
thermodynamics modeling to fluid flow. By 
simulating the streaming and collision processes of 
these particles, LBM can accurately capture the 
macroscopic behavior of the fluid, making it widely 
applicable in engineering. Its versatility and 
computational efficiency have made the LBM a 
popular choice for studying fluid flow phenomena 
ranging from simple flow patterns to highly complex 
multiphase and multiscale systems [5]. 
Implementing models in LBM for mass transport of 
multicomponent miscible mixtures requires 
ensuring physical consistency. Specifically, 
multicomponent effects must be taken into account 
to accurately capture the behavior of the mixture.  
Merely relying on passive scalar or interaction 
forces strategies alone is insufficient, as they may 
lack consistency. Passive scalar models are 
suitable only for modeling mass transport in diluted 
mixtures, while interaction forces are primarily 
used for segregation and agglomeration of species 
[6]. In contrast, this study adopts rigorous kinetic-
based models for particle collisions, enabling 
consistent mesoscale mass transfer simulations. 
Incorporating these models allows LBM to 
accurately represent complex interactions, offering 
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reliable insights for scientific and engineering 
applications. 
In this work, we propose a forcing term correction 
in LBM to accurately recover the Navier-Stokes 
equation without spurious terms and enable the 
incorporation of species forcing contributions for 
mass transport modeling. This forcing term was 
validated by implementing the Couette flow with 
suction-injection. 
 

Methodology 
The lattice Boltzmann equation (LBE) describes 

the evolution of the density distribution function 𝑓𝛼
𝑖 

in the discrete space 𝐱, time 𝑡, and velocity 𝐞𝛼
𝑖 , 

 

𝑓𝛼
𝑖(𝐱 + 𝐞𝛼

𝑖 𝛿𝑡, 𝑡 + 𝛿𝑡) =  𝑓𝛼
𝑖(𝐱, 𝑡) + [Ω𝛼

𝑖 (𝐱, 𝑡) + (1 −
1

2𝜏𝑖
) 𝑆𝛼

𝑖 (𝐱, 𝑡)] 𝛿𝑡  ,                  (1) 

 
where 𝑖 represents the species, 𝛼 the orientation in 

the discrete domain, and Ω𝛼
𝑖  and 𝑆𝛼

𝑖  the collision 
and forcing terms, which are responsible for 
inserting the relaxation dynamics to the 
equilibrium. 
Here, we adopt the explicit velocity-difference 
model, which, based on the Sirovich original 

collisional model [7], assumes Ω𝛼
𝑖 = Ω𝛼

𝑖𝑖 + ∑ Ω𝛼
𝑖𝑗𝑁

𝑗≠𝑖 , 

where the self- and cross-collision terms 
accounting for collisions between identical (𝑖-𝑖) and 

different particles (𝑖-𝑗) are 
 

Ω𝛼
𝑖𝑖(𝐱, 𝑡) = −

1

𝜏𝑖
(𝑓𝛼

𝑖 − 𝑓𝛼
𝑖(0)

)   ,              (2) 

 

Ω𝛼
𝑖𝑗(𝐱, 𝑡) = −

1

𝜏𝑖𝑗
(

𝜌𝑗

𝜌
)

𝑓𝛼
𝑖(𝑒𝑞)

𝑐𝑠,𝑖
2 (𝐞𝛼

𝑖 − 𝐮) ⋅ (𝐮𝑖
𝑒𝑞 − 𝐮𝑗

𝑒𝑞) . (3) 

 

The parameters 𝜏𝑖 and 𝜏𝑖𝑗 are the relaxation times 

related to the viscosity and mass transfer 
coefficient. 
Due to the discretization following a second-order 
Hermite expansion, the achieved equilibrium 
distribution functions based on the Maxwell-
Boltzmann distributions are  
 

𝑓𝛼
𝑖(0)

(𝐱, 𝑡) = [1 +
1

𝑐𝑠,𝑖
2 (𝐞𝛼

𝑖 − 𝐮) ⋅ (𝐮𝑖
𝑒𝑞

− 𝐮)] 𝑓𝛼
𝑖(𝑒𝑞)

  , (4) 

 

𝑓𝛼
𝑖(𝑒𝑞)

(𝐱, 𝑡) = 𝜔𝛼𝜌𝑖 [1 +
𝐞𝛼

𝑖 ⋅𝐮

𝑐𝑠,𝑖
2 +

(𝐞𝛼
𝑖 ⋅𝐮)

2

2𝑐𝑠,𝑖
4 −

𝐮2

2𝑐𝑠,𝑖
2 ]  ,       (5) 

 

where 𝑐𝑠,𝑖
2  is the sound speed related to species 𝑖 

and 𝜔𝛼  are lattice weights. 

At the end of each time step, the species density 𝜌𝑖 

and the species equilibrium velocity 𝐮𝑖
𝑒𝑞

 are 

computed through the zeroth- and first-order 

moments of 𝑓𝛼
𝑖, 

 

𝜌𝑖(𝐱, 𝑡) = ∑ 𝑓𝛼
𝑖(𝐱, 𝑡)𝛼   ,               (6) 

 

𝐮𝑖
𝑒𝑞 (𝐱, 𝑡) =

1

𝜌𝑖(𝐱,𝑡)
∑ 𝐞𝛼

𝑖 𝑓𝛼
𝑖(𝐱, 𝑡) +

𝛿𝑡

2
𝐅𝑖𝛼   ,                (7) 

 
which allows to further compute the mixture density 

𝜌 = ∑ 𝜌𝑖𝑖  and the mixture velocity 𝐮 = ∑ w𝑖𝐮𝑖
𝑒𝑞

𝑖 , 

where w𝑖 is the mass fraction of species 𝑖. 
After performing a perturbation analysis of the LBE 
through the Chapman-Enskog expansion, we 

found out that the forcing term 𝑆𝛼
𝑖  must be given by 

 

𝑆𝛼
𝑖 = 𝜔𝛼

𝐞𝛼
𝑖

𝑐𝑠,𝑖
2 ⋅ 𝐅i + 𝜔𝛼 [

(𝐞𝛼
𝑖 𝐞𝛼

𝑖 −𝑐𝑠,𝑖
2 𝐈)

(1−
𝛿𝑡

2𝜏𝑖
)𝑐𝑠,𝑖

4
⋅ 𝐮] ⋅ ∑

𝜌𝑖𝜌𝑗

𝜌𝜏𝑖𝑗

𝑁
𝑗≠𝑖 (𝐮𝑖

𝑒𝑞 −

𝐮𝑗
𝑒𝑞

)                           (8) 

 
to fully recover both the Navier-Stokes equation, 
devoid of any spurious terms, and the Maxwell-
Stefan equation with species forcing contributions 

𝐅i. Specifically, the term responsible for eliminating 
the spurious term is the final term in Eq. (8). In this 
work, this term is validated by implementing the 
Couette flow problem with suction-injection, 
represented in Fig. (1).  
In this benchmark, a fluid is compelled to flow with 

a velocity 𝑢0 towards impermeable walls separated 
by a distance 𝐻. The top wall is moving to the right 

with velocity 𝑈𝑥 . The mass fractions of species 1 

(binary mixture) are fixed as w1𝑏
 and w1𝑡

 in the 

bottom and top walls. Here, we set w1𝑏
= 0.1 and 

w1𝑡
= 0.9. 𝑢0 is adjusted to accommodate different 

conditions of Reynolds number (𝑅𝑒 = 𝑢0𝐻/𝜈) and 

Péclet number (𝑃𝑒 = 𝑢0𝐻/𝐷12), where 𝜈 is the 
kinematic viscosity and 𝐷12  is the binary diffusion 
coefficient. The analytical solutions of the velocity 
and concentration profiles read 
 

𝑢𝑥(𝑦)

𝑈𝑥
=

𝑒𝑥𝑝(
𝑅𝑒 𝑦

𝐻
)−1

𝑒𝑥𝑝(𝑅𝑒)−1
  ,                (9) 

 

w1(𝑦)−w1𝑏

w1𝑡−w1𝑏
=

𝑒𝑥𝑝 (
𝑃𝑒 𝑦

𝐻
)−1

𝑒𝑥𝑝 (𝑃𝑒)−1
 .                         (10) 

 

 
Figure 1. Illustrative sketch of the Couette flow 

with suction-injection. 
 

Results and Discussion 
The LBM simulations were evaluated with and 
without the forcing term, and both sets of 
simulations exhibited close agreement with the 
steady-state concentration and velocity profiles for 
the Couette flow with suction-injection, as 
illustrated in Fig. (2) for Re = 100 and Pe = 20. No 
significant differences were observed between the 
cases with and without the forcing term. However, 
this result was anticipated, as in the steady-state 

(equilibrium), the species velocities align (𝐮𝑖
𝑒𝑞

→
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𝐮𝑗
𝑒𝑞

 and Ω𝛼
𝑖𝑗 → 0), setting the last term of Eq. (8) to 

zero. Hence, the transient profiles should be 
compared to comprehensively assess the impact 
of the forcing term. 
 

       (a) 

 
 

       (b) 

    
Figure 2. Steady-state (a) concentration and (b) 
velocity profiles of the Couette flow with suction-

injection for Re = 100 and Pe = 20. 
 

Concentration and velocity profiles for simulations 
with and without forcing terms were compared for 
Re = 50, Re = 100, and Re = 200, maintaining a 
fixed Pe = 20. Figs. (3) and (4) depict the 
concentration and velocity profiles, respectively, 
over time. The concentration profiles remain 
identical regardless of the presence of forcing 
terms at all evaluated time points. This suggests 
that the forcing term The forcing term maintains 
mass conservation and preserves the dynamic 
behavior of mass transfer. 
Fig. (4) reveals there are no significant differences 
observed in the velocity profiles during the 
transient regime either. Only slight deviations were 
noted upon reaching steady-state (𝑡∗ = 1), as also 
depicted in Fig (2)b. As the Re increases, the 
velocity profiles become steeper, making it 
numerically challenging to verify and compare 
between simulated cases. However, within the 
evaluated range of Re, no significant differences 

were observed. Despite the lack of noticeable 
discrepancies between simulations with and 
without the forcing term during the transient 
regime, its inclusion remains crucial for 
algebraically eliminating spurious terms. 

 
                   (a) 

 
 

       (b) 

 
 

       (c) 

 
Figure 3. Transient concentration profiles of the 

Couette flow with suction-injection for Pe = 20 and 
(a) Re = 50, (b) Re = 100, and (c) Re = 200. 𝑡∗ 

represents a normalized time relative to the 
duration required to attain steady state. 
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                   (a) 

 
 

       (b) 

 
 

       (c) 

 
Figure 4. Transient velocity profiles of the Couette 
flow with suction-injection for Pe = 20 and (a) Re 

= 50, (b) Re = 100, and (c) Re = 200. 𝑡∗ 
represents a normalized time relative to the 

duration required to attain steady state. 
 

Conclusions 
In this study, a forcing term is introduced to 
accurately recover both the Navier-Stokes 
equation, devoid of spurious terms, and the 
Maxwell-Stefan equation with additional forcing 

contributions. The term in the proposed model 
responsible for eliminating spurious contributions 
was validated through the Couette flow problem 
with suction-injection, resulting in precise 
outcomes for the steady-state. Although no 
significant differences were observed between the 
simulations with and without this term in the 
transient regime for the considered Re range, its 
inclusion remains essential for algebraically 
eliminating the spurious terms. 
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