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Abstract  
The present work introduces a Machine Learning (ML) technique into the thermodynamics equilibrium of 
multicomponent mixtures flash-calculations.  Particularly, CO2 enriched mixtures´ systems are analyzed here.  
Binary interaction parameters play a critical role in flash-calculations as they quantify the molecular interactions 
within mixtures. However, accurately estimating these parameters poses a significant challenge due to the 
complex nature of molecular interactions. Fine-tuning, adjusting, and optimization techniques are commonly 
employed to determine these parameters. However, traditional approaches often require intuitive 
comprehension and are limited by the availability of data. This study employs sensitivity analysis to identify 
key parameters for calibration. Then, the machine learning-based Bayesian model calibration (ML-BMC) 
technique is employed to refine model parameters while constraining associated uncertainties. ML-BMC not 
only offers comparable calibration to expensive optimization methods but also provides a surrogate model for 
generate new predictions with constrained uncertainties and cost-effective sensitivity analysis. The developed 
methods function as a data-driven PVT solver, capable of refining predictions with additional experimental or 
operational observations. 
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Introduction  
The integration of Carbon Capture, Utilization, and 
Storage (CCUS) stands as a pivotal strategy in 
steering the transition toward zero-emission 
energy systems. The effective implementation of 
CCUS initiatives relies heavily on a thorough 
comprehension of the thermodynamic principles 
governing CO2 mixtures and their accompanying 
impurities. This deep understanding is essential 
not only for the effective deployment of such 
projects but also for optimizing the performance of 
multi-phase flow modeling techniques tailored to 
these complex fluid systems. 
The flow assurance simulations often necessitate 
a PVT table derived from flash calculations. 
Numerous equations of state and computational 
techniques have been devised for conducting 
Vapor-Liquid Equilibrium (VLE) and Vapor-Liquid-
Liquid Equilibrium (VLLE) calculations. Cubic 
equations of state (EoS) coupled with van der 
Waals quadratic mixing rules serve as the basis for 
numerous commercial and academic software 
applications.   
In this context, Binary Interaction Parameters, kij, 
(BIPs) play a pivotal role as they quantify the 
molecular interactions between different chemical 
species within a mixture. However, due to the 

complex nature of these interactions, no formal 
theory exists to precisely estimate these 
parameters. While several methods are available 
for computing them [1], [2], [3] evidence suggests 
that these calculations may lack accuracy and 
require adjustments. Therefore, fine-tuning, 
adjusting, and optimization techniques are 
commonly utilized to determine the appropriate 
values of these parameters [4], [5], [6]. 
Nevertheless, conventional tuning approaches 
often demand intuitive understanding and are 
limited by the availability of data. Also, optimization 
techniques will become expensive when dealing 
with numerous parameters (in a mixture with 21 
components there are about 210 parameters to be 
tuned).  
In this study, we aim to leverage the advancements 
in machine learning techniques to discern the most 
critical parameters and tune them using limited 
experimental data from various sources. To 
achieve this objective, we have opted for the 
Bayesian model calibration (BMC) technique ([7], 
[8]). Initially, we train a surrogate model using 
diverse simulations to establish a rapid model. 
Subsequently, we employ Gaussian Process-
based Calibration (GPC) to fine-tune the 
parameters.  

 

SPE Brazil Flow Assurance Technology Congress 

 Rio de Janeiro, Brazil, November 06 – 08 2024
   



 

 
SPE Brazil Flow Assurance Technology Congress, Rio de Janeiro, 2024 

Internal Use 

The next critical step involves selecting the 
parameters for calibration. To address this, we 
have integrated a sensitivity analysis technique        
( [9], [10]) to pinpoint parameters that hold potential 
for optimization. 
The subsequent sections of this paper will delve 
into the implementation of these techniques and 
present the corresponding results. However, it is 
essential to outline the case study employed in the 
present study. Here, we investigate the behavior of 
a hydrocarbon mixture comprising over 20 
components (LiveOil1) in the presence of a high 
concentration of CO2 (refer to [4] for detailed 
information). Specifically, we analyze the vapor-
liquid phase envelope of the mixture at fixed 
temperatures for various concentrations of CO2 
and compare it with experimental observations. 
Comparing the results of flash calculations with 
available experimental data reveals discrepancies, 
particularly when CO2 is part of the mixture. In this 
scenario, there are 210 parameters to be fine-
tuned, while we have access to only about 20 
observations.  
 

Sensitivity Analysis  
Sensitivity analysis examines how uncertainty in 
the results of a mathematical model or system is 
linked to various sources of uncertainty in its input 
parameters. In theory, such an analysis enables us 
to systematically identify the most crucial 
parameters for fine-tuning, without the need for 
prior knowledge or physical intuition. 
In this study, Sobol Sensitivity Analysis [9]  
implemented in SALib [10] has been primarily 
utilized. Two different criteria have been used for 
comparing predictions with experimental 
observations: Mean Squared Error (MSE) and the 
Integral Error (Int-Err) as the area between the 
experimental and simulation phase envelopes. 
Different forms of sensitivity indices (SI) include 
first-order indices, which assess the contribution to 
the variability in the model's output attributed to a 
single input parameter in isolation. Second-order 
indices gauge the contribution to output variability 
arising from the interaction between two specific 
input parameters (and so on). 
In our specific benchmark problem, we are 
confronted with 210 parameters to analyze. 
However, even with the GPU implementation of our 
PVT solver (which is approximately 50 times faster 
than the CPU implementation), it is impractical to 
scrutinize the sensitivity of all 210 parameters. 
Hence, we are narrowing our focus to a subset of 
three binary interactions to compare their 
sensitivity indices: k(CO2,CH4) as suggested in [4], 
k(CH4,Squ) due to highest molar weight of Squalane 
(Squ) among the components [4]  and k(CO2,Squ), 
based on our observations and same reasoning as 
before. We will discuss the solution to the issue of 
computational hunger of sensitivity analysis 
method in the next section. 
Table 1 shows the results of first order sensitivity 
analysis (SAlib [10]) of these parameters. Our 

investigation suggests that due to the very small 
and negligible second sensitivity indices, there are 
no higher-order interactions observed among 
these parameters. 
 
Table 1. Comparative Sensitivity Analysis Index of 
Binary Interaction Parameters. 

Parameters SAlib AS-Surr 

k(CO2,CH4)
 0.5090 0.2035 

k(CO2,Squ) 0.0802 0.0810 
k(CH4,Squ) 0.0052 0.0016 

 
As can be seen, k(CO2,CH4) displays the highest SI, 
which is consistent with previous observations [4], 
indicating that optimizing this parameter 
significantly improves the accuracy of model 
predictions. Also, it is evident that the SI of k(CO2,Squ) 
exceeds that of k(CH4,Squ). This suggests that the 
former has a more pronounced effect on the output 
results, particularly in aligning the phase envelope 
with experimental data. Interestingly, this finding 
contradicts the physical rationale for prioritizing 
k(CH4,Squ) in [4]. Consequently, relying solely on 
physical reasoning or intuition may not be 
adequate for selecting the most sensitive 
interaction parameter. Instead, the presented 
sensitivity analysis offers a systematic approach to 
identify parameters for calibration or optimization.  
To obtain these results, approximately 8,000 
simulations were conducted by sensitivity analysis 
algorithm, each generating phase envelopes 
based on different binary interaction parameter 
settings. Despite considering just three  
parameters to analysis, the computational cost 
remains significant, even with the utilization of 
resources such as GPUs. This underscores the 
necessity for faster solvers when analyzing all 
BIPs. The next section tries to tackle this issue. 
It is important to note that the objective of this 
analysis is to identify parameters requiring 
optimization, while the primary task remains 
unaddressed. To tackle these challenges, we 
adopt a calibration approach employing Gaussian 
processes. 
 
Gaussian Process-Based Calibration  
Science-based simulations are commonly used to 
predict the behavior of complex physical systems. 
Physical observations, on the other hand, are 
commonly used to solve the inverse problem, that 
is, to learn about the values of parameters within 
the model. This is referred to as calibration. In what 
follows, we will use Kennedy and O'Hagan's [7] 
terminology and notation.   
A simulator generally comprises two types of 
inputs: control variables and calibration 
parameters. Control variables, such as pressure, 
temperature and mixture composition, clarify the 
specific characteristics of the physical system to be 
predicted. In contrast, calibration parameters are 
parameters of the physical models, such as 
gravitational constant and critical temperature or 
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pressure of a pure component. These parameters 
can introduce an element of uncertainty due to their 
imprecise values, for example, binary interaction 
parameters BIPs. 
Let us denote our flash simulator as 𝜂(𝑢, 𝛫), where 

𝑢 signifies the control variables, and 𝛫 embodies 
the calibration parameters. Also, suppose that one 
has n experimental observations (points on phase 
envelope in our case), labeled as z1,z2,…,zn. Each 
instance zi corresponds to a set of control inputs 𝑢𝑖. 
The i-th observation zi can be expressed as: 
𝑧𝑖  =  𝑓(𝑢𝑖)  +  𝜖𝑖,                   (1) 
where 𝑓(𝑢𝑖) represents the true state of the 

physical system at control variable setting 𝑢𝑖, and 
𝜖𝑖 accounts for independent observational errors. 
Given numerous factors like imperfect physical 
modeling or uncertain model parameters, there 
naturally exists a mismatch between the real 
system state and our simulator predictions. This 
discrepancy, modeled as: 
 𝑓(𝑢)  =  𝜂(𝑢, 𝛫)  +  𝛿(𝑢)                           (2) 
where 𝛿(𝑢) characterizes the deviation between 
physical reality and our simulations. By merging 
Eqs. (1) and (2), one has 
𝑧𝑖  = 𝜂(𝑢𝑖 , 𝛫) +  𝛿(𝑢𝑖) + 𝜖𝑖 ,              (3) 
which relates the predictions, discrepancies and 
error in observations to the observed values.  
To model the discrepancy term, 𝛿(𝑢) is constructed 
using a basis representation, placing GP models 
on the basis weights [7]. The observation error term 
is assumed to follow normal distribution as 𝑁(0, 𝜀𝑖). 
Ultimately, we construct a surrogate model to 
emulate our flash simulator. To accomplish this, we 
utilize a constrained set of phase envelopes 
derived from various control and calibration 
parameters to train a Gaussian process model. 
This surrogate model provides a cost-effective 
approximation of the simulator. The surrogate 
model uses principle component analysis to limit 
the dimensionality of the outputs and represents 
the simulator as: 
𝜂(𝑢𝑖 , 𝛼) = 𝐵𝑖 𝑊(𝑢𝑖 , 𝛫),                           (4) 

where 𝐵𝑖 are the basis from Principal Component 
Analysis (PCA) and 𝑊(𝑢𝑖 , 𝛫) are weights defined 
as GP. The goal will be to maximize the probability 
of the observations, conditioned on the inputs, 
discrepancy and basis. The Bayesian model 
calibration (BMC) method, as outlined by Higdon et 
al. [7], has been put into practice. Further details 
can be found in the same reference [7]. One 
advantage of this model is that the surrogate model 
can be utilized for sensitivity analysis due to its 
cost-effectiveness. In summary, to train the 
surrogate model, an ensemble of test runs is 
generated by sampling model parameters from 
plausible distributions, such as a normal 
distribution centered around BIPs provided by 
group theory [2]. Subsequently, the trained 
emulator is integrated into a Bayesian framework 
to derive a posterior distribution (tuned) for the 
model parameters (BIPs). This step aims to refine 

the emulator predictions, aligning them more 
closely with experimental observations.  
 

Results  
In the present work, we have chosen to use the 
SEPIA package [11]. SEPIA (Simulation-Enabled 
Prediction, Inference, and Analysis) implements 
Bayesian emulation and calibration with the ability 
to handle multivariate outputs. 
In the Calibration process, if each parameter's 
posterior marginal distribution has a single, well-
defined peak, then the model parameters 
corresponding to those peaks can be considered 
calibrated model parameters. Otherwise (if sharp 
peaks are not created), further experimental data 
is likely required to fully investigate the model. 
Our results indicate that the mean of the posterior 
distribution for each parameter obtained by GPC, 
closely aligns with the values obtained from 
expensive optimization methods like grid search 
and AdaGrad (Adaptive Gradient Method); see [5]. 
Furthermore, the small standard deviation 
indicates a concentrated distribution around the 
mean, underscoring the effectiveness of our 
calibration approach (see Fig. 1). 
 

 
Figure 1. Posterior distribution of three selected 

parameters after calibration. 

This model can also quantify uncertainties in the 
predictions. Figure 2 shows the uncertainty in the 
predictions at fixed temperature of 373.15 K. As 
can be seen, regular flash calculation 
underestimates the phase envelope. While, our 
Bayesian model response shows complete 
agreement with the actual observed data. This 
graphical representation serves as a valuable tool 
for evaluating the reliability of the model and offers 
a confidence measure regarding its performance. 
It is important to note that this narrow uncertainty 
range depicted in the plot indicates an impressive 
performance from our calibration model. A slim 
uncertainty range suggests that the model's 
predictions consistently closely match the 
observed data points. This level of precision and 
reliability in the model's predictions is an 
encouraging indication, indicating that our 
calibration model adeptly captures the underlying 
relationships within the data and produces 
dependable results. 
Concluding our study, we compare the sensitivity 
analysis results obtained from the surrogate model 
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(SA-Surr) with those from SAlib. Remarkably, both 
methods identify the most critical parameters for 
optimization in the same order, albeit with slight 
variations in the indexes. These results are 
summarized in Tab. 1. However, a crucial 
observation lies in the significant disparity between 
the computational demands of the two approaches 
(240 times faster than SAlib).  
 

 
Conclusion 

While traditional fine-tuning techniques can adjust 
the predictions of the PVT solver with experimental 
observations, we opted to explore well-known 
machine learning techniques for this purpose. Our 
study demonstrates that these techniques, without 
the need for prior physical knowledge or 
experience, can effectively identify parameters 
suitable for optimization. Moreover, these 
techniques can provide vital data, such as 
uncertainty in the predictions. Leveraging this 
valuable information, it becomes feasible to 
explore various outcomes of flow assurance 
studies or plan future experiments. Finally, 
integrating traditional PVT solvers with these 
techniques transforms them into data-aware 
solutions. 
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Figure 1. Uncertainty Analysis for Fixed 
Temperature (373.15 K) 


