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Abstract 
Water and oil (W/O) emulsions are present in some of the stages of exploration and operation of oil fields. 
Therefore, it is important to define the dynamic viscosity behavior of these emulsions, since knowing the 
rheological behavior of the emulsion is essential for the flow assurance throughout the process. This study 
applied artificial intelligence (AI) procedures to predict the dynamic viscosity of five (05) oils from Brazilian 
basins, using oil temperature, shear rate, oil °API and water fraction present in the emulsion as variables for 
viscosity determination. This study used the computer language Python for data processing and artificial 
intelligence model structuring. The results obtained in the study were compared statistically using the mean 
absolute error with the results obtained through other methods already present in the literature, proving to have 
better results for the majority of the W/O emulsions analyzed. 
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Introduction 
In the oil exploration and extraction process, mainly 
in mature exploration fields, it is possible to 
observe an increase in the production of 
associated water, either in the free form or in the 
form of water-in-oil (W/O) emulsions that may have 
volumes of water greater than 60% [1][2]. These 
emulsions are mainly formed by the presence of 
natural oil emulsifiers and the multiphase flow of 
water and oil in the production line, pumps and 
valves [3]. Thus, it is essential to understand the 
rheological behavior of these emulsions in order to 
guarantee the oil flow and adapt to transport, 
storage and market specifications. 
The rheological behavior of these emulsions 
depends on factors such as: temperature, 
volumetric fraction of the dispersed phase, shear 
rate, viscosity of the continuous phase, dispersed 
phase viscosity, pressure, droplet radius, 
continuous phase density, dispersed phase 
density, concentration and nature of emulsifiers 
and the presence of solids present in the dispersed 
phase [1][5][6].  
Based on rheological data from five (05) Brazilian 
oils, this study aims to use an artificial intelligence 
(AI) algorithm (neural network) to predict the 
viscosity of oils from the correlation with the °API 
density, shear rate, temperature and amount of 
water added, something that does not exist in 
recent literature. 

Methodology 

The experimental data were obtained from the 
rheological analysis of 5 Brazilian oils from offshore 
fields. In these analyzes the effects of 
temperature, imposed shear rate and emulsified 
water content on dynamic viscosity were 
evaluated. All these analyzes were performed 
with dead oil, that is, not considering the presence 
of gas in the samples. Table 1 displays the 
intervals in which the analyzes were made. 

Table 1. Properties and intervals analyzed. 
Properties Interval 

Oil Density (°API) 
Temperature (°C) 

17,65 – 18,9 
4 – 60 

 Shear rate (s-1) 
Water fraction (%) 

10 – 250 
0 – 60 

Classical Correlations 
Woelflin (1942) proposed an exponential model 
that relates the viscosity of water-oil (W/O) 
emulsions and the fraction of emulsified water [7]. 
From a series of experiments that measured the 
kinematic vicosity of an oil with a density of 
25.1°API (at 60°F) and saline water with a density 
equal to 1.023 (at 68°F), Woelflin proposed the 
division of emulsions in three types: loose (30% 
emulsion and 70% water), medium (80% emulsion 
and 20% water) and tight (100% emulsion, no 
water). The equation generated by this exponential 
model, that correlates the relative viscosity (vr) to 
the water cut (ϕ) is shown in Eq. (1). 

vr	=	e(aϕ+	aϕ²)	 (1) 
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The values for the empirical parameters a and b of 
different types of emulsions are shown in Table 2. 

Table 2. Woelflin coefficients. 
Emulsion Type a b 

Loose 2.4740 2.6672 
Medium 1.6691 5.1920 

Tight 2.1102 5.2456 

Rønningsen (1995), from eight oils from the North 
Sea, proposed that the relative viscosity is 
influenced by temperature (T), water cut (ϕ) for 
different values of shear rate. The generated 
empirical expression is shown in Eq. (2). 

ln	vr	=	k1	+	k2T	+	k3ϕ	+	k4	ϕT	 	(2) 

Table 3. Rønningsen coefficients 
Shear rate 

30 s-1 100 s-1 500s-1

k1 0.01334 0.04120 -0.06671
k2 -0.0038010 -0.0026050 -0.0007750
k3

k4

4.338 
0.02698 

3.841 
0.02497 

3.484 
0.00500 

Neural Networks 
Machine learning is the branch of computing 
capable of detecting patterns in a set of data and, 
from them, creating predictions for a new set of 
data or serving as a basis for decisions [8]. Within 
the machine learning sphere, there are three most 
used models: supervised, semi-supervised and 
reinforcement learning. 
Artificial neural networks are machine learning 
models inspired by the functioning of neural 
systems of living organisms, since the architecture 
of neural networks is based on the simplification of 
the biological architecture of the nervous system. 
All living organisms are made up of cells and in the 
nervous system they are called neurons. These 
cells are typically made up of the cell body, 
dendrites, and axons. Information in the form of 
electrochemical impulses enter the cell through the 
dendrites, pass through the cell body and, 
depending on the stimulus received (excitatory or 
inhibitory), propagate a new signal through the 
axon that will then be received in another cell, 
which generates a new signal that will be received 
by another neuron [9]. It is estimated that each 
brain module has about 100,000 neurons 
connected to thousands of other neurons, forming 
a complex architecture [9], which is responsible for 
the human learning process. 
The neural network algorithm relates a series of 
artificial neurons units in order to interconnect them 
in order to form a network. Input elements of the 
neural network receive a stimulus, process this 
signal distributing new weights and propagating it 
to the next layers of the network. Layers that are 
neither part of the input nor the output of the 
network are called “hidden layers”. This type of 
algorithm in which information is passed in only one 

direction is called feedforward. There are also 
algorithms for feedback networks (recurrent), in 
which neurons have connections with each other 
without restrictions. Below, in Figure 1, the 
topology model of feedforward neural networks is 
presented. 
In this work, the multi-layer perceptron model [10], 
a supervised feedforward neural network 
algorithm, was used. In it, the algorithm is fed by 
two subsets of data: training and testing. Training 
data is added containing the input and output 
values to create the desired neural network. In this 
process, the output values of the training subset 
are used so that the algorithm calculates the 
weights between the links, causing the generated 
output values to be close to the values of the 
subset, causing the network to “learn” as the data 
input values relate to each other and calculate the 
test subset output values more accurately. 
To estimate the viscosity values of the W/O 
emulsions, the values of temperature (T), shear 
rate (γ̇) and water fraction (ϕ) were used as input 
variables for the machine learning algorithm. The 
neural network used in the work had a total of 100 
hidden layers, each of them with 100 artificial 
neurons. 

Results and Discussion 
The data for each oil was added and pre-
processed, as it is necessary for the input data to 
be normalized before being fed to the neural 
network algorithm. Then, the dataset of each 
emulsion was then partitioned into two: the 
algorithm training set that corresponds to 80% of 
the total data and the other 20% corresponding to 
the algorithm test set. 
Figure 1 displays the comparison between the 
measured and predicted values for each oil. 
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Figure 1. Results for each of the five oils 

In all oils, it can be seen that the measured values 
and the values calculated by the neural network 
algorithm present a 45° line in each graph, 
indicating a good approximation of the calculated 
values. 

Table 4 shows the Coefficient of Determination (R2) 
for each oil. 

Table 4. Coefficient of Determination. 

Oil (°API) R2 
Train Test 

17,65 0.9985 0.9982 
18,6 0.9980 0.9983 
18,15 0.9984 0.9984 
18,9 0.9974 0.9980 
18,5 0.9974 0.9978 

Finally, Woelflin and Rønningsen correlations were 
used to calculate the relative viscosity values in 
order to compare them to those obtained by the 
neural network algorithm. These classical 
correlations (Rønningsen and Woelflin), use the 
values of water fraction and, in the case of the 
Rønningsen correlation, also of temperature. 
Comparing to the classical correlations, the neural 
network algorithm adds the shear rate as input for 
the viscosity prediction. 
Figure 2 shows the comparison of the mean 
absolute error between methods for each 
emulsion, displaying that, besides the 18,9 °API oil, 
the AI proved to be more efficient predicting the 
dynamic viscosity of these W/O emulsions.    
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Figure 2. Comparison between methods’ error for 
each Oil 

Conclusions 
This study demonstrates the applicability of an 
artificial intelligence algorithm for predicting the 
dynamic viscosity of oil emulsions. From the large 
amount of data generated from the analysis of 
these emulsions, totaling 1782 rheological data 
from 5 W/O emulsions, it becomes possible for 
these algorithms to generate results with less error 
when compared to other correlations present in the 
literature. 
In addition, the prediction of the viscosity of oil 
emulsions by AI can also be used in conjunction 
with other tools, such as flow simulators, which 
makes it possible to study the behavior of 
emulsions, reducing the number of samples 
needed and the cost of analysis. 
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