
GPU Accelerated Always Hyperbolic Slug Capturing Method

Farhad Nikfarjam1, Hamidreza Anbarlooei1*, Daniel O. A. Cruz 2, Celso Dresjan Junior3
1 Department of Applied Mathematics, Federal University of Rio de Janeiro, Brazil, hamidreza@im.ufrj.br.
2 Mechanical Engineering Program, Federal University of Rio de Janeiro, RJ, Brazil.
3 Petrogal Brasil.

Abstract
A new slug capturing method, based on the 5-equation (always hyperbolic) formulation is developed. The
governing equations are solved using a simplified HLLC solver, and the excessive smearing of the equations
is handled by preconditioning technique. To accelerate the computation, the solver is implemented completely
on the GPU where the GPU’s shared memory is used extensively to minimize the costly global memory access.
The method predicts the experimental data very accurately, even for the intermittent flows with very low
frequencies where other numerical methods usually fail. The method also results in statistically developed
waves for long time integrations, property which other methods based on the common 4-equation two-fluid
model lacking. The GPU implementation is compared with the parallel CPU version. For a typical industrial
test case (12 km), the GPU code performs up to 140 times faster than CPU with 10 cores.

Keywords
Slug capturing; HLLC Solver; GPU acceleration;

Introduction
The slug capturing method solves the two-fluid
model equations in conjunction with a minimal set
of empirical closures models. This method is well
suited for simulating transient problems, such as
start-up, shutdown and depressurization of the
pipelines. However, the 4-equation two-fluid model
(conservations of mass and momentum for each
phase) is not always mathematically hyperbolic
and in several important industrial configurations
the underlying equations become ill-posed [1]. As
a result, unphysical waves start to produce and
propagate in the solution. In such cases, one
obtains a chaotic set of waves (slugs) during
simulation, which mostly interpreted as the
(length/frequency) distribution of the slugs.
However, it is easy to show that in a carefully
designed test problems, without any source of
randomness, even after very long integration
times, such randomness does not disappear and
the waves does not converge to a statistically
developed and identical solution. Numerically
regularization techniques try to solve this problem
by adding an especial interface pressure term [2].
However, this technique is not always able to solve
the ill-posed problems.
On the other hand, mathematically regularization
technique can eliminate this problem totally. In this
technique a new volume fraction evolution
equation will be added to the governing equations.
Here, the first equation in system (1)

(1) ቐ

𝜕௧𝛼௚ + 𝑢௜𝜕௫𝛼௚ = 𝑟௣(𝑝௚ − 𝑝௟)

𝜕௧(𝛼௞𝜌௞) + 𝜕௫(𝛼௞𝜌௞𝑢௞) = 0

𝜕௧(𝛼௞𝜌௞𝑢௞) + 𝜕௫(𝛼௞𝜌௞𝑢௞
ଶ + 𝛼௞𝑝௞) − 𝑝௞

௜ 𝜕௫𝛼௞ = 𝑆௞

where 𝛼௞ , 𝜌௞, 𝑢௞ , 𝑝௞ , 𝑝௞
௜ and 𝑆௞ stand for the volume

fraction, density, velocity, pressure, interfacial
pressure and the source terms which contain the
wall friction and the gravity effects. In the first
equation 𝑟௣is the relaxation parameter which
regulates the interaction between phases.
Although this method has many desirable
mathematical and numerical properties, it suffers
from two issues. First, 5-equation system (1)
experiences an excessive numerical dissipation
compared to the 4-equation formulation. In the
present work, the preconditioning technique is
adapted to solve this issue. This matter has been
addressed elsewhere [3] and is not topic of the
present work. The second issue, which is inherent
to all slug capturing methods, is that these methods
are computation-hungry. Slug capturing methods
need very fine computational grids, with cell-sizes
about the pipe diameter, compared to the “unit cell”
and “slug tracking” methods where cells, several
orders of magnitude larger, can be used. As a
result, using this method to simulate practical
applications (in order of dozen kilometers), if
impossible, is very limited and needs proper
computational resources.
 In the present work, we report our work on
accelerating the slug capturing method using GPU
compute device.

SPE Brazil Flow Assurance Technology Congress

Rio de Janeiro, Brazil, November 15 – 18 2022

SPE Brazil Flow Assurance Technology Congress, Rio de Janeiro, Brazil, 2022

Numerical Method
The governing equations (1) can be written as
(2) 𝜕௧𝑈 + 𝜕௫𝐹(𝑈) + 𝐻(𝑈)𝜕௫𝛼௚ = 𝑅(𝑈) + 𝑆(𝑈)

where 𝑈 = ൣ𝛼௚, 𝛼௞𝜌௞ , 𝛼௞𝜌௞𝑢௞൧
்
 is the vector of

unknowns, 𝐹(𝑈) = [0, 𝛼௞𝜌௞𝑢௞, 𝛼௞𝜌௞𝑢௞
ଶ + 𝛼௞𝑝௞]் is

the flux vector, 𝐻(𝑈) = ൣ𝑢௜, 0, (−1)௞𝑝௞
௜ ൧

்
 is the non-

conservative part of the flux, 𝑅(𝑈) = ൣ𝑟௣൫𝑝௚ −

𝑝௟൯, 0,0൧
்
 is the relaxation term and 𝑆(𝑈) =

[0,0, 𝑆௞]் is the source terms. The usual Godunov
method (finite volume) is used to discretize Eq. (2).
For this purpose, the system (2) is divided into the
homogenous part (hyperbolic step) and two other
steps (relaxation and source terms) as [4]
(3) 𝜕௧𝑈 = 𝑅(𝑈), 𝜕௧𝑈 = 𝑆(𝑈).
The hyperbolic part has been solved using an
approximate Riemann solver. The HLLC solver of
Lochon et al. [5] is adapted for this purpose. One
can find the solution at the end of the hyperbolic
part as

(4) 𝑈௜
ு = 𝑈௜

௡ −
∆௧

∆௫
൬𝐹

௜ା
భ

మ

௡ − 𝐹
௜ି

భ

మ

௡ ൰ −
∆௧

∆௫
൬𝐻

௜ା
భ

మ

௡ − 𝐻
௜ି

భ

మ

௡ ൰,

where the flux can be obtained as 𝐹(𝑈) =
[0, 𝐺௄(𝑈)]். Here the first element of the flux vector
is related to the first equation in (1). Considering
that 𝑢௞ ≪ 𝑐௞ (subsonic flow) and 𝑐௟ > 𝑐௚, where 𝑐௞
stands for the sound speed of the phase k, one can
simplify the original solver considerably. It is easy
to show that the flux of the liquid part becomes

(5) 𝐺௟௜௤ = ቊ
𝐺௅

௟௜௤
+ 𝑆௅

௟௜௤
൫𝑈௅

∗௟௜௤
− 𝑈௅

௟௜௤
 ൯ 𝑆ெ

௟௜௤
≥ 0

𝐺ோ
௟௜௤

+ 𝑆ோ
௟௜௤

൫𝑈ோ
∗௟௜௤

− 𝑈ோ
௟௜௤

൯ 𝑆ெ
௟௜௤

< 0

where 𝑆௅
௞, 𝑆ோ

௞ and 𝑆ெ
௞ are the speeds of the left

going, right going and contact discontinuity waves
of each phase. For the gas phase and when 𝑆ெ

௟௜௤
<

𝑆ெ
௚௔௦ we have

(6) 𝐺௚௔௦ = ൞

𝐺௅
௚௔௦

+ 𝑆௅
௚௔௦

൫𝑈௅
∗௚௔௦

− 𝑈௅൯ 𝑆ெ
௟௜௤

> 0

𝐺ோ
∗௚௔௦

+ 𝑆௄
௚௔௦

൫𝑈ெ
∗௚௔௦

− 𝑈ோ
∗௚௔௦

൯ 𝑆ெ
௟௜௤

< 0 < 𝑆ெ
௚௔௦

𝐺ோ
௚௔௦

+ 𝑆ோ
௚௔௦

൫𝑈ோ
∗௚௔௦

− 𝑈ோ
௚௔௦

൯ 𝑆ெ
௚௔௦

< 0

The other case (𝑆ெ
௟௜௤

> 𝑆ெ
௚௔௦) can be obtained

similarly. The third entry of the 𝐻 vector (for the
momentum equation) is only important and is
calculated as

(7) 𝐻௞
௠௢௠ =

ଵ∓௦௜௚௡ቀௌಾ
೗೔೜

ቁ

ଶ
(−1)௞ൣ𝛼ோ

௟௜௤
𝑝ோ

∗௟௜௤
− 𝛼௅

௟௜௤
𝑝௅

∗௟௜௤
൧

Here 𝑘 = 1 for the gas phase and 𝑘 = 2 for the
liquid phase. More details can be found in [5].
After solving one step of the hyperbolic part, one
needs to apply the effect of the source terms. For
this, we have
(8) 𝑈௜

ௌ = 𝑈௜
ு + ∆𝑡 𝑆(𝑈௡)

Finally, the result of the source term step is used
as the initial condition for the relaxation step. Here,
we assume 𝑟௣ → ∞ which is equivalent to assuming
𝑝௚ = 𝑝௟ = 𝑝. Considering that 𝛼௞𝜌௞ remains
constant during this step, one has
(9) 1 = 𝛼௚ + 𝛼௟ =

ఈ೒ఘ೒

ఘ೒(௣)
+

ఈ೗ఘ೗

ఘ೗(௣)
.

Assuming proper equation of state for each phase
as 𝑝௞(𝜌௞), one can solve Eq. (9) for the equilibrium
pressure. Then, obtaining 𝛼௞

ோ form 𝑝 is
straightforward.

Finally, one has 𝑈௜
௡ାଵ = ൣ𝛼௚

௥ , (𝛼௞𝜌௞)ு , (𝛼௞𝜌௞𝑢௞)ௌ ൧
்
.

As mentioned before, the 5-equation system
experiences excessive numerical diffusion
compared to the 4-equation counterparts. In the
present work, this issue has been solved using
preconditioning technique which regulates the
characteristic velocities in the liquid phase. The
detailed explanation of this technique is discussed
in [3].

GPU Acceleration
Graphics processing units (GPUs), with their
many-core architectures and higher memory
bandwidth, has become one of the most important
parts of high-performance computing nowadays.
Considering that the method described in the
previous section has a very small (local) discrete
stencil and it’s time marching nature, it is possible
to utilize the power of the GPUs very efficiently and
accelerate simulations tremendously.
In the present work, the numerical method
explained before is fully implemented on the GPU
using CUDA. In this implementation, all data are
stored on the GPU’s memory (to minimize the data
transfer between CPU and GPU) and the
subsequent calculations have been done there too.
When necessary to transfer data from GPU to CPU
(save the results), the copy process is overlapped
with kernel launches. It has been tried to use the
shared memory as much as possible and also
maximize coalesced access to the global memory
where possible. The 1D nature of the simulations
let to use efficiently achieve these.

Results and Discussion
The CPU and GPU versions of the aforementioned
method have been compared extensively with the
benchmarks test cases, to verify the
implementations. Also, several different experi-
ments have been simulated and the results are
compared with. Few have been reported before [5].
Here we just report the results showing the strength
of our numerical method and GPU speed-ups.
Figure 1 shows an example of the intermittent flow
in a straight pipe [6] (36𝑚 long pipe, inlet with 𝑢௦௟ =
0.41 𝑚/𝑠, 𝑢௦௚ = 2.36 𝑚/𝑠 and outlet to the ambient
pressure), where usual 4-equation solvers have
problem in predicting slug flow [7]. Our method
captures the intermittent nature of the flow correctly
and predicts the frequency of the slug flow
accurately. As evident, the results (slugs) finally
reach to a statistically develop state. It is very
important to notice that there is no source of
randomness in this problem (fixed inlet and outlet),
and such a behavior is naturally expected.
However, the solvers based on the 4-equation
formulations will produce several different waves
(slugs) which are due to the ill-posedness of their
governing equations. Because these waves are
unphysical, connecting them to statistical
phenomena such as slug length/frequency
distribution is baseless and wrong. Another

SPE Brazil Flow Assurance Technology Congress, Rio de Janeiro, Brazil, 2022

important feature of our method is its
independency to the grid resolution. While many 4-
equation solvers produce good results just for a
specific range of grid resolution (constant cell size
over diameter), our method shows gird
independency as expected from a well-posed
method.

Figure 1. Time history of liquid volume fraction in exit
of the straight pipe, with fixed inlet and outlets.

Figure 2 shows almost same problem as Figure
1, but for the case where fluids are oil and air. This
figure compares the predicted slug frequency with
the experimental data for different gas velocities.

Figure 2. Predicted slug frequencies compared to
the experimental data and numerical simulations

form [7], in oil/air case.

As evident, our method predicts the frequencies
very accurately, while the method of [7] can not
even capture the trend of the experimental data.
To finalize this section, the results of the GPU code
are compared with the CPU version. In this section
the results of the GPU code are obtained on a
NIVIDIA V100 and the results related to the CPU
version of the code are obtained on system with
two Intel I7 3.6GHz CPUs (10 cores are only used
from 12 available cores). Table 1 compares the
time needed by each version of the code to
complete simulation of a pipe with specified length
and number of computational cells for 1s of

physical time. This table covers pipes starting from
192 m to about 12 km (which is in order of a real
industrial problem). As evident, the GPU solver
outperforms the CPU code by more than 130 times
for many situations.

Table 1. Comparing GPU and CPU versions of
the code.

Length Cells CPU GPU Speed-up
192 m 25.6k 4.0m 2.8s 83 X
384 m 51.2k 8.1m 4.7s 103 X
768 m 102.4k 16.7m 8.5s 117 X

1.54 km 204.8k 33.6m 15.5s 130 X
4.07 km 409.6k 68.3m 28.6s 143 X
6.14 km 819.2k 133m 54.7s 146 X
12.3 km 1638.4k 265m 117s 136 X

Considering that one usually needs to simulate
such system for more than 500s (physical time) to
see the effects, the last case on GPU needs about
16 hours to complete. Same problem on CPU takes
around 92 days! This table clearly indicates that
GPUs can be used to accelerate slug capturing
methods tremendously. This will open the door to
use these methods for real industrial applications,
which was impossible before by using CPUs.

Conclusions
A new slug capturing method, based on the 5-
equation always hyperbolic formulation, is
developed here. The method shows very
interesting features such as grid independency and
converging to a statistically developed solution in
problems with no source of randomness. GPUs
can be used to tackle the time-consuming issue of
the method. Our numerical experiments show that
using GPUs, it is possible to simulate industrial size
problems in matter of hours. Considering just the
current hardware advancement trends (Moore’s
law for CPUs and Huang’s law for GPUs), slug
capturing methods will become one of the main
industrial tools in less than 5 years. There are other
areas needed to be studied further, which could
benefit more the slug capturing methods. One of
them is the machine learning techniques and their
integration with the simulation techniques. This is
the topic of our ongoing research.

Acknowledgments
The authors acknowledge the support awarded by
GALP/Petrogal Brazil and ANP – agencia Nacional
de Petróleo, Gás Natural e Biocombustível.

Responsibility Notice
The authors are the only responsible for the paper
content.

References
[1] Bonizzi, M.; PhD thesis. Imperial College

London (University of London), 2003.
[2] Dinh, T.N.; Nourgaliev, R.R.; Theofanous, T.G.;

10th International Topical Meeting on Nuclear
Reactors Thermal Hydraulics. Korea, 2003.

SPE Brazil Flow Assurance Technology Congress, Rio de Janeiro, Brazil, 2022

[3] Nikfarjam, F.; Anbarlooei, H.R.; Cruz, D.O.A.;
Preconditioning hyperbolic 5-equation two-
phase model for low Mach number simulations,
to be published.

[4] Ferrari, M.; Bonzanini, A.; Poesio, P., Int. J.
Numer. Methods Fluids,85, 2017.

[5] Nikfarjam, F.; Anbarlooei, H.R.; Cruz, D.O.A.; in
Multiphase Flow Dynamics: A Perspective from
the Brazilian Academy and Industry,2022.

[6] Ujang, P.M.; Lawrence, C.J.; Hale, C.P.; Hewitt
G.F.; Int. J. Multiph. Flow, 35, 2006.

[7] Sondermann, C.N.; PhD thesis. Federal
University of Rio de Janeiro, 2021.

