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Abstract 
A new slug capturing method, based on the 5-equation (always hyperbolic) formulation is developed. The 
governing equations are solved using a simplified HLLC solver, and the excessive smearing of the equations 
is handled by preconditioning technique. To accelerate the computation, the solver is implemented completely 
on the GPU where the GPU’s shared memory is used extensively to minimize the costly global memory access. 
The method predicts the experimental data very accurately, even for the intermittent flows with very low 
frequencies where other numerical methods usually fail. The method also results in statistically developed 
waves for long time integrations, property which other methods based on the common 4-equation two-fluid 
model lacking. The GPU implementation is compared with the parallel CPU version. For a typical industrial 
test case (12 km), the GPU code performs up to 140 times faster than CPU with 10 cores.      
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Introduction 
The slug capturing method solves the two-fluid 
model equations in conjunction with a minimal set 
of empirical closures models. This method is well 
suited for simulating transient problems, such as 
start-up, shutdown and depressurization of the 
pipelines. However, the 4-equation two-fluid model 
(conservations of mass and momentum for each 
phase) is not always mathematically hyperbolic 
and in several important industrial configurations 
the underlying equations become ill-posed [1]. As 
a result, unphysical waves start to produce and 
propagate in the solution. In such cases, one 
obtains a chaotic set of waves (slugs) during 
simulation, which mostly interpreted as the 
(length/frequency) distribution of the slugs. 
However, it is easy to show that in a carefully 
designed test problems, without any source of 
randomness, even after very long integration 
times, such randomness does not disappear and 
the waves does not converge to a statistically 
developed and identical solution. Numerically 
regularization techniques try to solve this problem 
by adding an especial interface pressure term [2]. 
However, this technique is not always able to solve 
the ill-posed problems. 
On the other hand, mathematically regularization 
technique can eliminate this problem totally. In this 
technique a new volume fraction evolution 
equation will be added to the governing equations. 
Here, the first equation in system (1)  

(1) ቐ

𝜕௧𝛼௚ + 𝑢௜𝜕௫𝛼௚ = 𝑟௣(𝑝௚ − 𝑝௟) 

𝜕௧(𝛼௞𝜌௞) + 𝜕௫(𝛼௞𝜌௞𝑢௞) = 0

𝜕௧(𝛼௞𝜌௞𝑢௞) + 𝜕௫(𝛼௞𝜌௞𝑢௞
ଶ + 𝛼௞𝑝௞) − 𝑝௞

௜  𝜕௫𝛼௞ = 𝑆௞

where 𝛼௞ , 𝜌௞, 𝑢௞ , 𝑝௞ , 𝑝௞
௜  and 𝑆௞ stand for the volume 

fraction, density, velocity, pressure, interfacial 
pressure and the source terms which contain the 
wall friction and the gravity effects. In the first 
equation 𝑟௣is the relaxation parameter which 
regulates the interaction between phases. 
Although this method has many desirable 
mathematical and numerical properties, it suffers 
from two issues. First, 5-equation system (1) 
experiences an excessive numerical dissipation 
compared to the 4-equation formulation. In the 
present work, the preconditioning technique is 
adapted to solve this issue. This matter has been 
addressed elsewhere [3] and is not topic of the 
present work. The second issue, which is inherent 
to all slug capturing methods, is that these methods 
are computation-hungry. Slug capturing methods 
need very fine computational grids, with cell-sizes 
about the pipe diameter, compared to the “unit cell” 
and “slug tracking” methods where cells, several 
orders of magnitude larger, can be used. As a 
result, using this method to simulate practical 
applications (in order of dozen kilometers), if 
impossible, is very limited and needs proper 
computational resources.  
 In the present work, we report our work on 
accelerating the slug capturing method using GPU 
compute device. 
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Numerical Method 
The governing equations (1) can be written as 
(2) 𝜕௧𝑈 + 𝜕௫𝐹(𝑈) + 𝐻(𝑈)𝜕௫𝛼௚ = 𝑅(𝑈) + 𝑆(𝑈)

where 𝑈 = ൣ𝛼௚, 𝛼௞𝜌௞ , 𝛼௞𝜌௞𝑢௞൧
்
 is the vector of

unknowns, 𝐹(𝑈) = [0, 𝛼௞𝜌௞𝑢௞, 𝛼௞𝜌௞𝑢௞
ଶ + 𝛼௞𝑝௞]் is 

the flux vector, 𝐻(𝑈) = ൣ𝑢௜, 0, (−1)௞𝑝௞
௜ ൧

்
 is the non-

conservative part of the flux, 𝑅(𝑈) = ൣ𝑟௣൫𝑝௚ −

𝑝௟൯, 0,0൧
்
 is the relaxation term and 𝑆(𝑈) =

[0,0, 𝑆௞]் is the source terms. The usual Godunov 
method (finite volume) is used to discretize Eq. (2). 
For this purpose, the system (2) is divided into the 
homogenous part (hyperbolic step) and two other 
steps (relaxation and source terms) as [4] 
(3) 𝜕௧𝑈 = 𝑅(𝑈),   𝜕௧𝑈 = 𝑆(𝑈).
The hyperbolic part has been solved using an
approximate Riemann solver. The HLLC solver of
Lochon et al. [5] is adapted for this purpose. One
can find the solution at the end of the hyperbolic
part as

(4) 𝑈௜
ு = 𝑈௜

௡ −
∆௧

∆௫
൬𝐹

௜ା
భ

మ

௡ − 𝐹
௜ି

భ

మ

௡ ൰ −
∆௧

∆௫
൬𝐻

௜ା
భ

మ

௡ − 𝐻
௜ି

భ

మ

௡ ൰, 

where the flux can be obtained as 𝐹(𝑈) =
[0, 𝐺௄(𝑈)]். Here the first element of the flux vector 
is related to the first equation in (1). Considering 
that 𝑢௞ ≪ 𝑐௞ (subsonic flow) and 𝑐௟ > 𝑐௚, where 𝑐௞ 
stands for the sound speed of the phase k, one can 
simplify the original solver considerably. It is easy 
to show that the flux of the liquid part becomes 

(5) 𝐺௟௜௤ = ቊ
𝐺௅

௟௜௤
+ 𝑆௅

௟௜௤
൫𝑈௅

∗௟௜௤
− 𝑈௅

௟௜௤
 ൯  𝑆ெ

௟௜௤
≥ 0

𝐺ோ
௟௜௤

+ 𝑆ோ
௟௜௤

൫𝑈ோ
∗௟௜௤

− 𝑈ோ
௟௜௤

൯  𝑆ெ
௟௜௤

< 0

where 𝑆௅
௞, 𝑆ோ

௞ and 𝑆ெ
௞  are the speeds of the left 

going, right going and contact discontinuity waves 
of each phase. For the gas phase and when 𝑆ெ

௟௜௤
<

𝑆ெ
௚௔௦ we have 

(6) 𝐺௚௔௦ = ൞

𝐺௅
௚௔௦

+ 𝑆௅
௚௔௦

൫𝑈௅
∗௚௔௦

− 𝑈௅൯   𝑆ெ
௟௜௤

> 0

𝐺ோ
∗௚௔௦

+ 𝑆௄
௚௔௦

൫𝑈ெ
∗௚௔௦

− 𝑈ோ
∗௚௔௦

൯     𝑆ெ
௟௜௤

< 0 < 𝑆ெ
௚௔௦

𝐺ோ
௚௔௦

+ 𝑆ோ
௚௔௦

൫𝑈ோ
∗௚௔௦

− 𝑈ோ
௚௔௦

൯   𝑆ெ
௚௔௦

< 0

The other case (𝑆ெ
௟௜௤

> 𝑆ெ
௚௔௦) can be obtained 

similarly. The third entry of the 𝐻 vector (for the 
momentum equation) is only important and is 
calculated as  

(7) 𝐻௞
௠௢௠ =

ଵ∓௦௜௚௡ቀௌಾ
೗೔೜

ቁ

ଶ
(−1)௞ൣ𝛼ோ

௟௜௤
𝑝ோ

∗௟௜௤
− 𝛼௅

௟௜௤
𝑝௅

∗௟௜௤
൧

Here 𝑘 = 1 for the gas phase and 𝑘 = 2  for the 
liquid phase. More details can be found in [5]. 
After solving one step of the hyperbolic part, one 
needs to apply the effect of the source terms. For 
this, we have 
(8) 𝑈௜

ௌ = 𝑈௜
ு + ∆𝑡 𝑆(𝑈௡)

Finally, the result of the source term step is used
as the initial condition for the relaxation step. Here,
we assume 𝑟௣ → ∞ which is equivalent to assuming
𝑝௚ = 𝑝௟ = 𝑝. Considering that 𝛼௞𝜌௞ remains
constant during this step, one has
(9) 1 =  𝛼௚ + 𝛼௟ =

ఈ೒ఘ೒

ఘ೒(௣)
+

ఈ೗ఘ೗

ఘ೗(௣)
. 

Assuming proper equation of state for each phase 
as 𝑝௞(𝜌௞), one can solve Eq. (9) for the equilibrium 
pressure. Then, obtaining 𝛼௞

ோ form 𝑝 is 
straightforward.  

Finally, one has 𝑈௜
௡ାଵ = ൣ𝛼௚

௥ , (𝛼௞𝜌௞)ு , (𝛼௞𝜌௞𝑢௞)ௌ ൧
்
.

As mentioned before, the 5-equation system 
experiences excessive numerical diffusion 
compared to the 4-equation counterparts. In the 
present work, this issue has been solved using 
preconditioning technique which regulates the 
characteristic velocities in the liquid phase. The 
detailed explanation of this technique is discussed 
in [3]. 

GPU Acceleration 
Graphics processing units (GPUs), with their 
many-core architectures and higher memory 
bandwidth, has become one of the most important 
parts of high-performance computing nowadays. 
Considering that the method described in the 
previous section has a very small (local) discrete 
stencil and it’s time marching nature, it is possible 
to utilize the power of the GPUs very efficiently and 
accelerate simulations tremendously. 
In the present work, the numerical method 
explained before is fully implemented on the GPU 
using CUDA. In this implementation, all data are 
stored on the GPU’s memory (to minimize the data 
transfer between CPU and GPU) and the 
subsequent calculations have been done there too. 
When necessary to transfer data from GPU to CPU 
(save the results), the copy process is overlapped 
with kernel launches. It has been tried to use the 
shared memory as much as possible and also 
maximize coalesced access to the global memory 
where possible. The 1D nature of the simulations 
let to use efficiently achieve these.  

Results and Discussion 
The CPU and GPU versions of the aforementioned 
method have been compared extensively with the 
benchmarks test cases, to verify the 
implementations. Also, several different experi-
ments have been simulated and the results are 
compared with. Few have been reported before [5]. 
Here we just report the results showing the strength 
of our numerical method and GPU speed-ups. 
Figure 1 shows an example of the intermittent flow 
in a straight pipe [6] (36𝑚 long pipe, inlet with 𝑢௦௟ =
0.41 𝑚/𝑠, 𝑢௦௚ = 2.36 𝑚/𝑠 and outlet to the ambient 
pressure), where usual 4-equation solvers have 
problem in predicting slug flow [7]. Our method 
captures the intermittent nature of the flow correctly 
and predicts the frequency of the slug flow 
accurately. As evident, the results (slugs) finally 
reach to a statistically develop state. It is very 
important to notice that there is no source of 
randomness in this problem (fixed inlet and outlet), 
and such a behavior is naturally expected. 
However, the solvers based on the 4-equation 
formulations will produce several different waves 
(slugs) which are due to the ill-posedness of their 
governing equations. Because these waves are 
unphysical, connecting them to statistical 
phenomena such as slug length/frequency 
distribution is baseless and wrong. Another 
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important feature of our method is its 
independency to the grid resolution. While many 4-
equation solvers produce good results just for a 
specific range of grid resolution (constant cell size 
over diameter), our method shows gird 
independency as expected from a well-posed 
method.  

Figure 1. Time history of liquid volume fraction in exit 
of the straight pipe, with fixed inlet and outlets. 

Figure 2 shows almost same problem as Figure 
1, but for the case where fluids are oil and air. This 
figure compares the predicted slug frequency with 
the experimental data for different gas velocities. 

Figure 2. Predicted slug frequencies compared to 
the experimental data and numerical simulations 

form [7], in oil/air case. 

As evident, our method predicts the frequencies 
very accurately, while the method of [7] can not 
even capture the trend of the experimental data.  
To finalize this section, the results of the GPU code 
are compared with the CPU version. In this section 
the results of the GPU code are obtained on a 
NIVIDIA V100 and the results related to the CPU 
version of the code are obtained on system with 
two Intel I7 3.6GHz CPUs (10 cores are only used 
from 12 available cores). Table 1 compares the 
time needed by each version of the code to 
complete simulation of a pipe with specified length 
and number of computational cells for 1s of 

physical time. This table covers pipes starting from 
192 m to about 12 km (which is in order of a real 
industrial problem). As evident, the GPU solver 
outperforms the CPU code by more than 130 times 
for many situations.  

Table 1. Comparing GPU and CPU versions of 
the code. 

Length Cells CPU GPU Speed-up 
192 m 25.6k 4.0m 2.8s 83 X 
384 m 51.2k 8.1m 4.7s 103 X 
768 m 102.4k 16.7m 8.5s 117 X 

1.54 km 204.8k 33.6m 15.5s 130 X 
4.07 km 409.6k 68.3m 28.6s 143 X 
6.14 km 819.2k 133m 54.7s 146 X 
12.3 km 1638.4k 265m 117s 136 X 

Considering that one usually needs to simulate 
such system for more than 500s (physical time) to 
see the effects, the last case on GPU needs about 
16 hours to complete. Same problem on CPU takes 
around 92 days! This table clearly indicates that 
GPUs can be used to accelerate slug capturing 
methods tremendously. This will open the door to 
use these methods for real industrial applications, 
which was impossible before by using CPUs. 

Conclusions 
A new slug capturing method, based on the 5-
equation always hyperbolic formulation, is 
developed here. The method shows very 
interesting features such as grid independency and 
converging to a statistically developed solution in 
problems with no source of randomness. GPUs 
can be used to tackle the time-consuming issue of 
the method. Our numerical experiments show that 
using GPUs, it is possible to simulate industrial size 
problems in matter of hours. Considering just the 
current hardware advancement trends (Moore’s 
law for CPUs and Huang’s law for GPUs), slug 
capturing methods will become one of the main 
industrial tools in less than 5 years. There are other 
areas needed to be studied further, which could 
benefit more the slug capturing methods. One of 
them is the machine learning techniques and their 
integration with the simulation techniques. This is 
the topic of our ongoing research.  
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